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Potential Scattering as Opposed to Scattering Associated with Independent
Particles in the S-Matrix Theory of Strong Interactions*
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A definition of a relativistic generalized poten. ial is given,
suitable at arbitrary energies for a pair of particles whose elastic
scattering amplitude satisfies the Mandelstam representation.
It is shown that the generalized potential plays a role in the dy-
namics analogous to that of the ordinary nonrelativistic potential
in a Schrodinger equation and determines the scattering to the
same extent. Below the threshold for inelastic processes the gen-
eralized potential is real and its energy dependence in the elastic
region is expected for certain particle combinations (such as the
nucleon-nucleon) to be weak. In such cases one may uniquely
define, for use in the Schrodinger equation, an energy-independent
ordinary potential that coincides with the potential of Charap and

Fubini. In general, when the potential is complex and energy-
dependent the dynamical problem involves iteration of an integral
equation deduced by Mandelstam. The generalized potential may
be decomposed according to range and it is shown that keeping
only the long- and medium-range parts, corresponding to transfer
of one or two particles, is almost equivalent to the "strip approxi-
mation. " Finally, a'general definition is given of "pure potential
scattering" as opposed to scattering associated with "independent"
particles, either stable or unstable, and a variety of experimental
situations are discussed with respect to this distinction, which is
shown to be susceptible to experimental test.

E should like to propose in terms of the analytic
continuation of the S matrix a relativistic de6ni-

tion of a generalized two-body "potential" that appears
to have three useful properties: (a) Its role in thedy-
namics is analogous to that of an ordinary potential,
and in the nonrelativistic limit its relation to the poten-
tial de6ned by Charap and Fubini' may be established.
(b) Its long-range and medium-range parts may be
evaluated for arbitrary energies in terms of one- and
two body 5-m-atrix elements. (c) It allows a precise
and physically helpful distinction between pure "poten-
tia1, scattering" and scattering associated with "inde-
pendent" particles.

Our definition is made within the Mandelstam frame-
work, which describes the scattering amplitude for
three di6erent two-body reactions by a single analytic
function. ' Suppose the two particles whose mutual
interaction is of interest are called a and b. Then we
label the three Mandelstam channels as follows:

I. a+b ~ a+b (barycentric energy squared=s),

II. a+a —+ b+b (barycentric energy squared= t),

III. a+5 ~ a+b (barycentric energy squared= u).

Roughly speaking, channel II provides the "direct"
forces for channel I, while channel III provides "ex-
change" forces. More precisely, we de6ne the generalized
direct potential Vz'z(t, s) as the channel II absorptive
part, A2, nzimus the contribution from p, &

&"&, the
elastic double-spectral function for channel I. That is,

Vz" (t,s) =A s(t,s)

—(I/w) "ds'fp„'&"& (s', t)/s' s7 (1)—.

The elastic double-spectral function for channel I
is given by the Cutkosky graphs of Fig. 1.' If we diagon-
alize the S matrix in channel I with respect to all in-
ternal quantum numbers (isotopic spin, strangeness,
etc.), then the Cutosky recipe gives us (if spin complica-
tions are ignored)

p zel(s t)

A,*(t',s)A, (t",s)
dt'dt"

m. q,gs & 3 K&(q,s;t, t', t")
(2)

1
t t As*(u', s)A, (u",s)+ I du du

~ q.Qs & ~ K'(q, s;t,u', u")

A, (u, s) = Vz'"(u, s)

+(&/a), ds'Lp, „""(s',u)/s' —s7,

where

K(q', t,t', t")= t'+t"+t'"—2(tt'+tt"+t't") —tt't"/qs

with a corresponding formula for p,„'&"&(s,u) in which
t is replaced by I and the bilinear combinations A2 A3
and As*As appear. The range of integration in (2) is
restricted to the region in which E is positive. These
formulas were erst derived by Mandelstam from the
elastic unitarity condition. '

Now, by dednition,

A, (t,s) = Vz" (t,s) +(I/a) ds'Q, '&"& (s', t)/s' —s7,

so if the generalized potentials VI" and VI"' are given
one may compute the elastic double-spectral functions
by iteration of formula (2), as originally emphasized
by Mandelstam. ' All statements to this point have been

The generalized exchange potential has a corresponding
definition in terms of channel III and p,„I("&.

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.

' J. Charap and S. Fubini, Nuovo cimento 14, 540 (1959).
2 S. Mandelstam, Phys. Rev. 112, 1344 (1958).

' R. E. Cutkosky, J. Math. Phys. I, 429 (1960); Phys. Rev.
Letters 4, 624 (1960).
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formal and, correspondingly, exact. We now consider,
in order, the three aspects of our generalized potential
that were listed in the 6rst paragraph.

(a) If one considers nonrelativistic scattering by
a superposition of Yukawa direct and exchange
potentials':

m) AUS isa b ~inus )~b o~~

then, except for trivial questions of normalization, if
V&'r(t, s) is replaced by gs;, (/) and Vrr" (N,s) by g, (ss),
the equations determining the double-spectral functions
differ from Eqs. (2) and (3) above only in the replace-
ment of the factor gs by M,+M &. Thus our generalized
potentials determine the dynamics to the same extent
and in much the same way as an ordinary potential.
In fact it is easy to show that although the "potential"
defined by Eq. (1) is in general energy-dependent
and complex, it becomes real for s below the inelastic
threshold, and when M ', 3f~'))m ', as in nucleon-
nucleon scattering, the dependence on s in the elastic
region is weak (especially for small t). It has been pointed
out to us by J. Charap that in such a case, if one wishes
to use the potential in a Schrodinger equation, some
modification is required because even when q,' is small
there are contributions from large values of s' in the
integral on the right-hand side of Eq. (3). Such con-
tributions behave like an extra term in a nonrelativistic
potential, and can be calculated in a simple way from a
knowledge of the generalized potential. ' Once this is
done, one obtains the nonrelativistic potential already
dehned by Charap and Fubini. ' Of course if one works
directly with the integral equations (2) and (3), as
one must in x-m and x-E scattering, this modification
is unnecessary.

(b) The Cutkosky recipe' tells us how to compute

HALO
bJ( lib fall

FIG. 1. Cutkosky graphs for p„i& ). To obtain p I( I)

the lines for u and 5 should be interchanged.

4 R. Blankenbecler, M. L. Goldberger, N. N. Khuri, and S. B.
Treiman, Ann. Phys. 10, 62 (1960).' The correction may be calculated up to any finite value of $

by a finite number of iterations of Eq. I'3), taking the difference
between relativistic and nonrelativistic values of the integral as
the correction to the potential. In practice, in the E-S problem,
if one wishes to calculate only the one- and two-pion parts of the
potential (t(9m ') a single iteration snilices. We are extremely
grateful to M. Froissart for assistance in clarifying this question.

F&G. 2. Cutkosky graphs providing double-spectral functions
for the two-body "direct potential. " A subtraction term corre-
sponding to 7=0 in channel II must also be included.

the generalized potentials in terms of analytic continua-
tions of 5-matrix elements. It is convenient to classify
contributions according to "range, " that is, in terms
of the masses of the various intermediate states in
channels II and III. The very-long-range one-particle
contributions are trivial, as usual, and require no special
comment. The medium-range two-particle contributions
to VI' are associated with the graphs of Fig. 2, where
the omission of the box diagrams should be noted. The
latter are contained in p, t'("& and must be eliminated
according to formula (1). Formulas for the graphs of
Fig. 2 will be similar to formula (2) above, with s and 1

interchanged and a E function that depends on the
masses of the exchanged particles. Thus, a sufhcient
knowledge of the absorptive parts for the appropriate
two-body reactions will allow a calculation of the part
of the direct potential associated with two-particle
transfer; the exchange potential can be handled in a
similar way. Keeping only the one- and two-particle
contributions to the generalized potential is essentially
equivalent to the "strip approximation" described
in an earlier Letter. ' The equivalence is not precise
because, for example, in the strip approximation one
includes terms in the direct potential of the type of Fig.
3, which correspond to the transfer of more than two
particles. If we have made a physically correct identi-
fication of the range concept in defining our generalized
potentials it appears superQuous to carry such terms
when multi-particle transfer is not systematically
calculated. (On the other hand, their inclusion should
do no harm and may give some estimate of the im-
portance of short-range forces. )

We may comment bere that the approximation of
neglecting or treating phenomenologically the exchange
of more than two particles does not depend for its
validity on the energy. The approximation appears just
as plausible at high as at low energies, so, as explained
previously, ' the "peripheral" approach is by no means

' G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 5, 580
(1960); Phys. Rev. 123, 1478 (1961).
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FIG, 3. Cutkosky graph in-
cluded in the strip approxima-
tion but corresponding to the
transfer of more than two
particles in the generalized
direct potential.

inelastic discontinuity is obtained directly by projection
from the imaginary part of the generalized potentials,

t-+'
ImA zz""& (s) =— d cos8 Pz(cos8)

2 —1

1
I

Im Vz" (t', s)X—

restricted to the elastic region. Our direct "potential, "
for example, automatically develops an imaginary part
equal to p.&'('") for s above the inelastic threshold, where

I (in) I (e1)ps' = pst, p. t

This imaginary part causes the proper reduction in the
modulus of the scattered wave to compensate for in-
elastic processes. However, the mechanism is not quite
the same as for a complex energy-independent potential
in a Schrodinger equation, where time-reversal is
sacrificed. Energy dependence is intimately associated
with the imaginary part of our generalized potential,
and time reversal is thereby preserved.

(c) We finally discuss a matter of principle, assuming
that somehow Vz" and V&"' are completely known.
Our comments here are a synthesis of remarks made at
various times by others but never, to our knowledge,
collected in one place. It has been shown above that a
knowledge of the generalized potential for channel I is
equivalent to a complete knowledge of the double-
spectral functions as well as a knowledge of the single-

spectral functions for channels II and III. In order to
define the amplitude completely, however, we further
require, in addition to any over-all subtraction constants,
the single-spectral function for channel I (i.e., the elastic
absorptive parts of a finite number of low partial waves
in channel I). Here there arises the well-known CDD
ambiguity, ' which is now recognized as equivalent to
the possibility of unstable elementary particles with
the quantum numbers of channel I. One way to charac-
terize the ambiguity is in terms of the /z'//D technique
of partial-wave calculation introduced by Chew and
Mandelstam. ' Let us briefly review the essential fea-
tures of this method.

One starts with a knowledge of the comp/ete discon-

tinuity across the unphysical cuts of the partial-wave
amplitude and of the inelastic discontinuity on the
physical cut. All this information can be obtained once
our generalized potentials are given and the dynamical
Eqs. (2) and (3) have been solved by iteration. The

' I. Castillejo, R. Dalitz, and F. Dyson, Phys. Rev. 101, 453
(&956).

G. F. Chew and S. Mandelstam, Phys. Rev. 119, 407 (1960).

while the complete unphysical discontinuity of A&' is
to be projected in the usual way out of A2 and A3. '
Froissart has shown how an equivalent purely elastic
problem can then be constructed, with a modified dis-
continuity on the unphysical cut and. a modified phase
shift. ' We make our discussion here in terms of this
modified problem, where the elastic unitarity condition
is exact. The denominator function may then be dePzsed

by
t s—sp

D, (s) =exp~—
bz(s')

(5)
$ So $ —$

We propose that this prescription be extended to the

' M. Froissart (to be published).' A recent preprint by R. Omnes gives an alternative approach
entirely in terms of the function D&(s). The content of the two
approaches is equivalent, although the Omnes method has the
advantage of exhibiting explicitly the unphysical sheet.

"The 2n constants have some restrictions on their range of
values, corresponding to the requirement that the poles not appear
on the physical sheet.

where 5& is the equivalent elastic phase shift gz(s, )=0$,
and separate dispersion relations may be written down
for numerator and denominator functions. "These dis-
persion relations, once established, lead to a linear
integral equation, singular at most at infinity, whose
solution if it exists at. all is unique for the given dis-
continuities, ' but there is an ambiguity with respect to
the number of subtractions. Unitarity restricts the
asymptotic behavior of the quotient Xz/Dz, but an
arbitrary number n of subtractions in D& is possible,
provided it is matched by a corresponding number in
S~. It is possible to associate the 2n subtraction con-
stants with the positions and residues of e pairs of poles
on the unphysical sheet. "These we wish to call unstable
"independent" particles. Poles on the unphysical sheet
that occur even when no "extra" subtractions are made
we wish to call "dynamical resonances. "

For nonrelativistic scattering an unambiguous dis-
tinction can be made. ' If one wants the N/D solution
that corresponds -to "pure" potential scattering one
writes the dispersion relation for D~ with no arbitrary
constants:

s —sp p" ImDz(s')
Di(s) = 1+ ' ds'

zr ~ s (s —sp) (s —s)
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relativistic case as a definition of pure potential scat-
tering. Such a solution (if it exists) is completely deter-
mined once the generalized potential is given, and cor-
responds to the condition 8~ —+ 5~(~) as s —& ~, where
h&(~) (~, as may be seen from Eq. (5):"

~~(")
lim D~(s) =exp ins+constant ~ s"'"' . (7)

Evidently, making m arbitrary subtractions in D& cor-
responds to

nn-&bi(~)( (m+1)vr.

To complete the argument, we consider the possi-
bility of a stable particle with the quantum numbers of
channel I. With a su%ciently attractive force, a zero of
the function D&(s) given by Eq. (6) may move to the
real axis of the physical sheet at s= s&, sg (sp correspond-
ing to a bound state of mass gsb LIn .such a case the
function D~ (s) given by Eq. (6) differs from that defined
in Eq. (5) by a factor (s—sq)/(sp st).] The position
and residue of the pole in the amplitude associated with
this zero are completely determined by the generalized
potential. In contrast, a stable "independent" particle
of mass gs„brings with it two new constants. One may
either introduce a pole into the numerator function at
s = s~ or make a single subtraction in both Ã~ and D~ and
adjust the two constants to make D~(s„)=0 while at the
same time 1V&(s„) yields the desired residue of the pole.
These two ways of constructing the amplitude are easily
shown to give exactly the same result. (The former
yields the function Dt(s) defined by Eq. (5) while the
denominator function from the latter differs by a factor
(s—s„)/($0 s„);however the two numerator functions
differ by exactly the same factor. ) The former method
is more convenient from a computational standpoint,
but the latter shows clearly that a CDD pole is an inde-
pendent particle that happens to be unstable.

We are aware that when unitarity in channels II
and III is included in the discussion (as well as crossing
symmetry, if one or both of these channels correspond
to the same reaction as channel I), then the inclusion
or exclusion of unstable independent particles in channel
I is not completely arbitrary. For example, Froissart
has recently shown that over-all unitarity (in all three
channels) uniquely determines all but the S and P
waves once the complete double-spectral function is
given. "Even the P wave is determined if one accepts
the Pomeranchuk high-energy relations, and if the no-
tion of "saturation" of the unitarity condition' is
added there may be no arbitrariness left in the S matrix.
Nevertheless it seems to us helpful to have a clean
definition of pure potential scattering that can be

"This asymptotic behavior was pointed out to us in a private
conversation by M. Froissart (Physics Department, University
of California, Berkeley).

"M. Froissart, Phys. Rev. 123, 1053 (1961).

applied in all situations. The prescription proposed here
has often been privately discussed by workers in the
field, '4 but never with relation to a precise definition of
the "potential. "

To illustrate the signi6cance of our criterion let us
consider some specific pairs of strongly interacting
particles. Historically, the first interaction to be studied
was that between two nucleons, and it has been found
that an energy-independent potential, employed in a
Schrodinger equation, gives an approximately correct
description. Thus we expect that when the S-matrix
approach is employed there will be no need for "inde-
pendent" particles of nucleon-number two. The deu-
teron, of course, is a dynamical bound state. The pion-
nucleon interaction has also been studied in detail and
in the state of I=~3, J=~ there is a resonance. The
Chew-Low formula for the (—', P) phase shift corresponds
to the prescription of Eq. (6)," so its success in pre-
dicting the width of the resonance implies that we are
not dealing here with an independent particle. The long-
range attractive exchange-force due to single-nucleon
transfer is chiefly responsible. By contrast, in the mS
state with I= —,', J= —,

' there may be a stable independent-
particle pole in the sense of our definition, associated
with the nucleon. This is not known to be a dynamical
bound state, but the necessity for such a pole could be
inferred from crossing symmetry once the generalized
potential, with its single-nucleon exchange term, is given.
The position and residue are therefore determined by the
generalized potential.

Passing on to the ~m. interaction, there have been two
resonances indicated experimentally, one at an energy

2m with I=O, J=O and one at 5m with I= 1,
J=1.." Some theories treat either or both of these
unstable particles as independent of the pion, but the
calculations of Chew and Mandelstam' and their pro-
posed extension by the present authors, for example,
have been based on Eq. (6) and therefore correspond
to the assumption that such states are dynamicalres-
onances of the 2m system. It remains to be seen whether
such calculations will be successful in predicting the
positions and widths of the resonances or whether these
parameters must be introduced as independent con-
stants. A similar remark may be made about the reson-
ance in vrE scattering. "

In systems such as the mA, where the first inelastic
process is also a two-body reaction (ICE), caution must
be exercised in applying the above simple criterion.
The most satisfactory approach is to employ a matrix
X/D method'~ including all the competing two-body
reactions and treating only multi-particle states as
inelastic. In such a spirit almost all models for the V*

"For example, by M. Gell-Mann and S. Mandelstam.
'5 G. F. Chew and F. Low, Phys. Rev. 101, 1570 (1956).
' For a survey of recently discovered resonances, see the Pro-

ceedings of the 1960 Berkeley Conference on Strong Interactions
LRevs. Modern Phys. 33, July (1961)j.

' J. D. Bjorken, Phys. Rev. Letters 4, 473 (1960).
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currently under discussion would be classed as dynami-
cal. If, however, one concentrates on the m A system then
the Dalitz-Tuan model makes the I'* an independent
particle, whereas the model based on global symmetry
rests on an attractive force between the m and the A..'

The chief reason for writing this paper is our impres-
sion, perhaps erroneous, that many workers in the
strong-interaction field do not realize that in the S-
matrix framework any distinction can be made between
diRerent types of resonance elastic scattering. The dis-
tinction emphasized here, even if the words used in the
description do not appear appropriate to all readers, is
subject to experimental test. A closing observation that

we 6nd difficult to resist is that to date most such tests
point a@ay from the notion of independent-particle
scattering. It is plausible, therefore, that voce of the
strongly interacting particles are corrzpletely independent
but that each is a dynamical consequence of interac-
tions between others. In such a situation, when the en-
tire S matrix is considered, there would be no arbitrary
dimensionless (coupling) constants and presumably
only one dimensional constant to establish the scale of
masses. However, when one concentrates on a small
part of the over-all problem, asking about the elastic
interaction of a particular pair of particles, the discus-
sion presented here should still be meaningful.
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Radiative Decay of the Neutral K Meson: X' ~ ~+~t
J. DREITLEIN AND H. PRIMAKOPF
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(Received May 2, 1961)

The consequences of the particle mixture theory of the neutral E meson are investigated for the rare
radiative decay mode: E ~ p+y. The two photon decay rates of the EP, E2' mesons are estimated as
=1.3X10z sec ' (Cabibbo and Ferrari) and =(1.6X10z/(gs„rc'/4zr)) sec ' =10' sec '. It is shown that a
time-dependent net circular polarization of each of the two photons results from the interference between
the EP and E2 channels feeding the 2p state. The correlated linear polarizations of the two photons also
exhibit a similar time-dependent behavior. The possibility of experimental detection of the effects discussed,
from which the sign as well as the magnitude of the EP, IC2 mass difference can be determined, is very
briefly explored.

S OME unusual properties of the neutral E meson
complex were first predicted by Gell-Mann and

Pais': the double lifetime behavior, and by Pais and
Piccioni': the regeneration phenomenon. Such pro-
perties have since been observed experimentally, '4 and
theoretically have been shown to hold independently
of the failure of parity conservation and of charge
conjugation conservation in decays induced by the
weak interactions. ' '

One further phenomenon peculiar to the neutral

E mesons is the predicted time dependence of the rate
of appearance of the neutral E-derived leptons, ~ an
oscillatory eRect occurring with a frequency given by
the mass diRerence Am=—ml —m2 between the EI' and
E&'. Analogous oscillatory eRects associated with the
regeneration phenomenon and the double lifetime
behavior have been used4 to fix the order of magnitude
ot lt~zztl as ltl'zztl =I/r(+")

In this note we point out another curious neutral E
phenomenon which is encountered in the rare radiative
decay mode: Ev~p+p.

t This work was supported in part by the National Science
Foundation.
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With respect to the strong interactions, the neutral
E mesons are best described by one non-Hermitian
field —that of the E and E mesons —while, with
respect to the weak interactions, two Hermitian 6elds-
those of the EI' and E2' mesons —best characterize
the neutral E meson decays. Immediately after a E' is
created the corresponding state can be viewed as a
coherent mixture of a EI' and a E2'.

7 S. B. Treiman and R. Sachs, Phys. Rev. 103, 1545 (1956);
see also S. B. Treirnan and S. Weinberg, ibid 116, 239 (1959) for.
a discussion of analogous effects in the rate of appearance of
neutral E derived 371- states.


